您当前的位置: 首页 > 资讯 >

长方体的表面积教案 每日热讯

2023-06-15 14:06:13 来源:互联网

以下是小编收集整理的长方体的表面积教案,仅供参考,希望对大家有所帮助。如果这20篇文章还不能满足您的需求,您还可以在本站搜索到更多与长方体的表面积教案相关的文章。

篇1:长方体的表面积

教学目标


(资料图片)

1.通过操作观察,使学生知道长方体和正方体表面积的含义.

2.初步学会长方体和正方体表面积的计算方法.

3.培养学生的动手操作能力和空间观念.

教学重点

建立表面积概念,初步学会计算长方体和正方体的表面积.

教学难点

正确建立表面积的概念.

教学步骤

一、铺垫孕伏.

1.长方体的特征是什么?

2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

二、探究新知.

导入  :同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容.

(一)建立长方体表面积的概念.

1、教师提问:什么叫做面积?

长方体有几个面?

(用手按前、后,上、下,左、右的顺序摸一遍)

2、教师明确:这六个面的总面积叫做它的表面积.

3、学生两人一组相互说一说什么是长方体的表面积.

4、教师板书:长方体6个面的总面积,叫做它的表面积.

(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的.

2.教学例1.

做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的`表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积.

第一种解法:

篇2:长方体的表面积

6×4+6×4+4×5+4×5+6×5+6×5

=24+24+20+20+30+30

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

第二种解法:

长方体表面积=上下面面积+前后面面积+左右面面积

6×5×2+6×4×2+4×5×2

=60+48+40

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

第三解法:

长方体表面积=(下面面积+前面面积+右面面积)×2

(6×5+6×4+5×4)×2

=74×2

=148(平方厘米)

答:至少要用148平方厘米硬纸板.

3.思考:你认为哪种解法简便?

(根据乘法分配律可以把第一个式子和第二个式子改写成第三个式子;第三个算式更简便些)

4.教师小结:

计算长方体表面积的关键是找出每个面的长和宽.

5.练习:

一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?

三、全课小结.

这节课我们学习了什么知识?我们学习了长方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)

四、随堂练习.

1.用两种方法计算自带长方体的表面积.

2.计算下图的表面积.

篇3:长方体的表面积

②有几种计算方法?

③哪种方法比较简便?

五、课后作业 .

一个长方体的形状大小如下图:

它上、下两个面的面积分别是多少平方分米?

它前、后两个面的面积分别是多少平方分米?

它左、右两个面的面积分别是多少平方分米?

这个长方体的表面积是多少平方分米?

六、板书设计 .

篇4:长方体的表面积

长方体6个面的总面积叫做它的表面积.

例1.做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

6×4+6×4+4×5+4×5+6×5+6×5

=24+24+20+20+30+30

=148(平方厘米)

=60+48+40

=148(平方厘米)

6×5×2+6×4×2+4×5×2

=60+48+40

=148(平方厘米)

(6×5+6×4+5×4)×2

=74×2

=148(平方厘米)

答:至少需要148平方厘米硬纸板.

篇5:长方体和正方体的表面积教案

长方体和正方体的表面积教案

长方体和正方体的表面积 教学目标:(一) 让学生理解长方体和正方体表面积的意义,初步学会长方体和正方体表面积的计算方法。 (二) 根据现实情境和信息,通过动手操作 小组合作 观察思考等解决问题的方法,去探索感受长方体和正方体的表面积的概念和长方体表面积计算方法,培养学生动手操作 观察 抽象概括探索问题的能力和初步的空间概念。   (三) 使学生感受到数学与生活的密切联系,培养学生初步的数学意识。 教学重点:长方体和正方体表面积的概念和长方体表面积的计算。 教学难点:确定长方体的每一个面的长和宽。 教学方法:运用引导探索的教学策略,以“用活教材,练活习题,激活课堂”为教学途径,创设一定的教学情境,让学生感受到数学从生活中来,又应用于生活。 教具准备:教师准备长方体和正方体表面积展开的教具,学生每人准备长方体和正方体纸盒和火柴盒各一个。 教学过程: 一 直揭课题:  长方体和正方体的表面积  师问:看了这个题目,你想到了什么?想知道什么? 二  复习准备:(投影出示题目) 三  学习新课:   (一) 长方体和正方体表面积的意义。   1、教师出示长方体教具,问:   ①这个盒子是什么形状的,它有几个面?   ②我们把它放在桌面上最多只能看到几个面?   ③如果要使六个面一眼全看到,有什么办法?(把六个面展开放在一个平面上)   2、让学生拿出各自的长方体纸盒,教师指导学生沿着上面与前面相交的棱、左面与上面、前面、后面相交的棱以及右面与上面、前面、后面相交的棱将纸盒剪开。   让学生将剪开的纸盒展平、合上,再展平,观察原来长方体的各个面展平后各在什么位置,并分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面,教师注意订正。   3、教师选一个展开图贴在黑板上,请一个学生在展开图上指出原长方体的各个面。   4、学生和剪长方体的方法一样剪开正方体,并分别用“上”、“下”、“前”、“后”、“左”、“右”标明原正方体的6个面,教师注意订正。   5、教师选一个正方体展开图贴在黑板上,然后问:每个面是什么形状?有几个面积相等的.面?每个面的边长是原正方体的什么?   师:现在我们是不是很清楚的看到了长方体和正方体的六个面?   教师归纳板书:长方体或正方体6个面的总面积,叫做它的表面积。(学生齐读概念)  (二)长方体表面积的计算方法。   1、多媒体演示展开动画   观察展开过程,出示下列问题::长方体有几个面?哪些面的面积相等?有几组相等的面?上、下、前、后、左、右各个面的长和宽分别是原长方体的什么?   2、小组讨论并汇报(讨论和回答时可让学生对着长方体盒子说)   (引导学生答出:上、下每个面的长和宽分别是原长方体的长和宽,前、后每个面的长和宽分别是原长方体的长和高,左、右每个面的长和宽分别是原长方体的宽和高。)   3、空间想象   通过想象在头脑中建立一个立体的长方体形象;   4、练习六第l、2题。(第一幅图让学生说出前面的长和宽,再答出前面的面积,后两幅图直接答出前面的面积,每一幅图前面面积算出后,追问:后面的面积是多少?要求前、后面的总面积怎么列式?)     (三)教学例1:   例1(出示幻灯片5)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?   ⑴要求做这个长方体纸盒需要用多少厘米硬纸板就是要计算这个长方体的什么?   ⑵长方体的表面积包括几组面积相等的长方形?   ⑶每组面积相等的长方形的长、宽、各是多少?(学生独立填空)   ⑷学生小组讨论并试作:如何计算出这个长方体的表面积?   ⑸指名学生说出自己的算法,教师板书。   解法1:6×5×2+6×4×2+5×4×2   =60+48+40   =148(平方厘米)   解法2:(6×5+6×4+5×4)×2   =(30+24+20)×2   =74×2   =148(平方厘米)   答:至少要用148厘米2纸板。   ⑹比较两种方法   ⑺教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。     四、巩固反馈   做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。   五、全课总结   (1)长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。   (2) 长方体的表面积如何计算   六、布置作业: 练习六第3、4题。 七、板书设计:长方体和正方体的表面积

篇6:教案-长方体和正方体的表面积

教案-长方体和正方体的表面积

一、复习旧知,导入新课; 二、小组合作,探究新知; 1.探索长方体表面积的概念。 分组操作: (1)每个学生拿一个长方体纸盒,沿着棱剪开,再展开,看一看,展开后的形状。 (2)在展开后的图形中,用“上”、“下”、“前”、“后”、“左”、“右”标明六个面。 (3)你有什么发现? (4)师生共同小结:长方体6个面的总面积,叫做它的表面积。 2.探索长方体的表面积的计算方法。 (1)出示长方体展开图。 ①思考讨论:长方体每个面的长和宽与长方体的长、宽、高有什么联系? ②填一填        上、下每个面,长=长方体的vw,宽=长方体的vw;        前、后每个面,长=长方体的vw,宽=长方体的vw;        左、右每个面,长=长方体的vw,宽=长方体的vw。 (2)观察思考:怎样求长方体的表面积? (3)教学例题。 做一个长 0.5m,宽0.3m,高0.4m的长方体募捐箱,至少要用多少平方米硬纸板? ①学生分析题意,试着解答.教师巡视,相机辅导。 ②学生汇报: 启发学生明确题目中的已知条件和所求问题,要求“做这样一个长方体纸盒要用多少平方厘米的`硬纸板”就是要计算这个长方体的表面积,首先要找出每个面的长和宽,根据长方体的长、宽、计算每个面的面积,每个面的面积之和就是表面积。 让有不同解法学生说出解法及解题思路。 0.5*0.3*2+0.5*0.4*2+0.3*0.4*2 (0.5*0.3+0.5*0.4+0.4*0.3)*2 ③分组讨论: 比较两种解法有什么不同?有什么联系?哪种解法简便? 不同:第一种方法是先分别算出上、下面的面积和,前后面的面积和,以及左、右面的面积和,然后加起来。第二种方法是先算上面、前面、左面三个面的面积和,再乘以2。 联系:根据乘法分配律可以把第一个算式改变成第二个算式。第二个算式更简便些。 计算长方体表面积时,最关键的是找出什么? 思考:如果按我们算好的硬纸板的面积去领正合适的纸板,能做出我们需要的募捐箱吗?为什么? (4)总结出长方体表面积的计算方法。 (三)结合实际,灵活应用 1.募捐箱做好后,想找一些漂亮的红纸装饰一下箱子的外面,观察一下哪些面需要装饰漂亮又省纸?那需要多少红纸?(小组讨论解决) 2.一个长方体的饼干盒,长10cm,宽6cm,高12cm。如果围着它贴一圈商标(上下面不贴),这张商标纸的面积至少要多少平方厘米?  如果把一个长方体切分成两个长方体时,这两个长方体的表面积的和比原长方体的表面积是增加了还是减少了?为什么? (四)总结评价,知识升华 1. 今天你运用了什么学习方法? 2. 学习上有什么收获? 3. 你感受最深是什么?

篇7:《长方体和正方体的表面积》教案

《长方体和正方体的表面积》教案

同学们好,下面我们来学习“长方体和正方体的表面积。”在没学新课之前你们回忆一下,长方体和正方体的面积怎样求?我们先来复习一下长方形和正方形面积公式,长方形的面积=长x宽,正方形的面积=边长x边长。

这是一个长方体,它是由六个长方形围成的,相对的两个面的面积相等。这是一个正方体,它是由六个正方形围成的,并且六个面都是相等的正方形,那么,什么叫长方体或正方体的表面积呢?

长方体或正方体六个面的总面积,叫做它的表面积。

下面我们来观察长方体,只要我们求出每个面的面积,再把它们相加就可以了。如果把长方体展开,会得到怎样的图形呢?

我们分别展开长方体的上下面、左右面、前后面,就变成这样一个平面图形,它的上面和下面是两个完全相等的长方形,请你们认真观察,这两个长方形的长和宽分别是长方体的哪条边?分别是长方体的长和宽,那么上下两个面的面积就等于长x宽x2。我们再来观察一下前后面,前后面也是完全一样的`长方形,它的长和宽又分别是长方体的哪两条边呢?分别是长方体的长和高,同学们很快就能求出前后面的面积,前后面的面积等于长x高x2。最后再来观察一下左右两个面,它的长和宽又分别是长方体的哪两条边。分别是长方体中的高和宽,同学们很容易就能求出左右面的面积,左右面的面积等于高x宽x2。

现在老师把这个平面图形还原成长方体,你们再仔细观察一下,上面、前面、右面分别和长方体的哪两条边有关系,上面和长方体的长宽有关系.前面和长方体的长高有关系,右面和长方体的高宽有关系、我们只要求出上面、前面、右面的面积,用它们的和再乘2,就求出了长方体的表面积。所以,长方体的表面积=(长x宽十长x高十宽x高)x2,会求长方体的表面积,求正方体的表面积就简单多了,正方体是由六个完全一样的正方形围成的,每个正方形的边长又都是正方体的棱长。用棱长乘棱长先求出一个面的面积,再来乘6就可以了,所以正方体的表面积等于棱长x棱长x6,也可以写成棱长的平方x6。我们掌握了长方体和正方体表面积的求法,就可以解决生活中的实际问题了。

篇8:长方体和正方体的表面积教案

教学目标

(一)理解长方体和正方体表面积的意义。

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点

(一)长方体、正方体表面积的意义和计算方法。

(二)确定长方体每一个面的长和宽。

教学用具

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程设计

(一)复习准备

1.口答填空。

(1)长方体有( )个面,一般都是( ),相对的面的( )相等;

(2)正方体有( )个面,它们都是( ),正方形各面的( )相等;

(3)这是一个( ),它的长( )厘米,宽( )厘米,高( )厘米,它的棱长之和是( )厘米;

(4)这是一个( ),它的校长是( )厘米,它的棱长之和是( )厘米。

2.说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)

(二)学习新课

篇9:《正方体长方体的表面积》教案

教学目标:

1.理解什么是立体图形的表面积;

2.掌握正方体与长方体的表面积的计算方法;

3.正确利用所学知识解决生活实际问题。

教学重点:

篇10:《正方体长方体的表面积》教案

教学难点:

如何利用所学知识解决生活实际问题。

教学准备:

长方体,正方体,多媒体。

教学过程:

一、联系实际,揭示课题

同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。

在粉刷之前,校方提前进行了资料收集,收集的资料如下:

1. 每个教室的长8米,宽5米,高3米;

2. 每个教室要对四壁和屋顶进行粉刷;

3. 每个教室门窗的面积共20平方米;

4. 每个教室要粉刷三次;

5. 第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。

6. 我校共有 个教室需要粉刷。 你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗? (揭示课题)

二、师生交流,提出问题

师:同学们,看到这个课题,你想知道什么?

生1:什么叫表面积?

生2:长方体与正方体的表面积怎么求?它们的表面积之间有什么关系?

生3:学了这些知识有什么用处?

[用与实际相联系的事例来引发学生的兴趣,使学生愿意学。这也正是符合了心理学中:教学过程始终是伴随着学生的情绪,并且智力活动也受其极大的影响的论点。在良好的情景创设下,学生学习十分容易地投入。]

三、师生互动,探究问题

1. 学生操作,解决问题;

(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。 (学生操作) 我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。

(出示学生得到的正方体表面的展开图。)

(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?

[学生通过操作得到正方体表面的展开图,由于沿着不同的棱剪开,就得到的正方体表面的展开图也不同,因此会有多种展开图,至于有哪几种展开图之一知识在二年级下的学习中已经解决,教师不需要展开。]

2. 组内交流,发表见解;

(1)正方体表面的展开图有6个正方形的面组成。 (2)它们的形状都相同。

(3)它们的面积都相等。

3. 教师引导,深入探究;

(1)想一想可以怎么求这6个面的面积总和。 先求出1个面的面积,再乘以6,就是这6个面的面积总和。

(2)请你试着求一求你手中的正方体6个面的面积总和。

注意:先测量棱长的尺寸,再计算,取整厘米数。 (学生计算) 看书巩固,掌握方法; 刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的.介绍,请打开书,翻到P39,看书回答:

(1)什么是正方体的表面积?

(2)正方体的表面积的计算公式是什么?

[学生通过对自己手中的正方体表面的展开图的观察,自主探究,得出了什么是正方体的表面积。正方体的表面积可以怎么求的结论。最后通过看书规范自己的结论。]

四、巧加点拨,学而致用

1.追随上知,质问质疑

拿出手中的长方体纸盒,指出它的表面积,说说什么是长方体的表面积? 知道它的面积该怎样计算吗?

2.迁移知识,灵活运用

学生利用所学方法推导长方体的表面积计算公式。

3.组际交流,发表见解

4.看书小结,掌握方法

请打开书,翻到P40,看书回答:

(1)什么是长方体的表面积?

(2)长方体的表面积的计算公式是什么?

5.引用方法,灵活解答

算一算你同桌手中长方体的表面积。

[凡是学生能独立思考的,就放手让学生自己获得;凡是能通过小组合作解决的问题,就通过班级适当交流取得共识。当学生独立思考、合作学习都不能很好解决时,教师再适时指导、点拨。]

篇11:《长方体和正方体的表面积二》教案

学习内容:

求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。

学习目标:

1、利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2、通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

求一些不是完整六个面的长方体、正方体的表面积。

教具运用:

课件

教学过程:

一、复习导入

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)

1、做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2、一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授

1、教材25页第5题

(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

(2)学生读题,看图,理解题意。

(3) 上下面不贴说明什么?(说明只需要计算4个面的.面积,上下两个面不计算)

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10122+6122=240+144=384 (cm2)

方法二:(1012+612)2=(120+72)2=384 (cm2)

答:这张商标纸的面积至少需要384平方厘米。

2、教材26页第8题

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)

(2)学生读题,看图,理解题意。

(3)提问鱼缸的上面没有盖说明什么?(说明只需计算正方体5个面的面积之和)

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

335=95=45 (dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业

完成教材第26页练习六第9、10题。

四、课堂小结

提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的表面积,这节课你有什么收获?

五、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的表面积(2)

一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

方法一:10122+6122

=240+144

=384 (cm2)

方法二:(1012+612)2

=(120+72)2

=384 (cm2) 答:这张商标纸的面积至少需要384平方厘米。

一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?

335

=95

=45 (dm2) 答:制作这个鱼缸时至少需要玻璃45平方分米。

篇12:《长方体和正方体的表面积》的教案及反思

《长方体和正方体的表面积》的教案及反思

教学目标:

1、建立表面积概念。

2、小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

3、运用公式实际应用,并提升学生的数学思维能力。

教学重点:

1、长方体表面积公式的求法探究。

2、公式的实际应用。

教学难点:

长方体表面积公式中长宽,长高,宽高呈现后,能够清晰的知道它们分别求的是哪些面的面积。

教具、学具的准备:长方体盒、正方体盒、桔子、长方体展开图、课件

教学研究过程:

一、回忆长方体、正方体特征,重建表象

1、师:我们已经初步认识了长方体和正方体,谁来说说长方体、正方体有哪些特征?

2、生:汇报

(长方体有6个面,每个面都是长方形或有两个相对面是正方形;长方体相对的面面积相等;长方体有8个顶点,12条棱,每平行的四条棱长度相等)

(正方体6个面都是完全相等的正方形,正方体是特殊的长方体,它的12条棱都相等)

3、师小结并引出课题

同学们对长方体、正方体认识的很好,今天我们一起共同来研究长方体、正方体的表面积。(板书课题)

二、建立表面积概念,认识表面积

1、师:看到这个课题,你最想知道或最想了解什么?

2、生交流: 什么是表面积?

怎样求表面积?

求表面积在生活中有什么用途?

表面积和以前所学的面积有什么不同?

3、师拿一桔子;提出:你知道桔子的表面积指的是哪里吗?

生摸一摸,说一说。

4、师:物体表面的总面积叫做物体的表面积,长方体的表面积指的是哪里,那正方体呢?

5、生指一指,摸一摸,说一说。

三、探求长方体表面积计算方法、正方体表面积计算方法

1、师:我们知道什么是表面积,如何来求它们的表面积呢?

小组内两两合作,把你如何求长方体表面积的思路与你的同桌进行交流。

(师在小组间巡视)

2、生交流汇报各种求长方体表面积的方法。

3、交流比较各种求法,继而得出长方体表面积计算方法(汉字与字母公式表示)

长方体表面积=(长宽+长高+宽高)2

S= 2(ab+ah+bh)

4、课件展示:通过课件的展示,让学生直观感受长方体

表面积方法的研究过程。

5、生总结:正方体表面积计算方法(含字母)

正方体表面积=棱长棱长6

S=6a2

四、基本反馈练习

1、计算一香皂盒的表面积

师:老师手里这个盒子的长为10cm,宽为7cm,高为3cm,

请你计算这个盒的表面积。

生试做,并指生上台板演

2、课件出示(三个立体图形),分别计算它们的表面积。

3、生在实物投影仪前讲解交流。

五、解释应用(课件出示题目)

1、一长方体铁盒长18厘米,宽15厘米,高12厘米,做这个铁盒至少要用多少平方厘米的铁皮?

a、生交流思路

b、列式。

2、一正方体无盖木箱,棱长5分米,这一箱子的表面积是多少?

a、生试做

b、交流思路

3、一间长8米,宽6米,高4米教室,门窗面积是15平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?

a、小组内交流思路

b、全班交流解题策略

c、生计算

3、谈收获或体会

通过这节课的研究与交流,你的收获或体会是什么?

反思:本着让学生的主体性得到充分体现,实施学生主体参与教学的理念,在课堂教学中体现主体实验的两条基本原则,即诚心诚意的让学生做主人,严肃严格的基本训练。通过老师提供的材料,创设一切有利于学生主体参与的环境氛围,在教师的引领及点拨下,让孩子们自己去认知、去概括归纳总结,亲历知识形成的过程,在建构知识的过程中让更多的孩子体验成功的快乐,使孩子们真正成为课堂学习中幸福的主人,使孩子们获得有效的数学学习,学习质量得到提高。本着这一教学理念,这节课设计了以下几个大的框架。

框架一:从回忆长方体、正方体特征,重建长方体、正方体表象,为解决本解决本节课的知识搭建一个前台。

框架二:建立表面积概念

在提供实物这一材料下,通过看一看、指一指、摸一摸、说一说,调动多个感官来很好的认识、理解表面积这一概念。

框架三:探求表面积计算方法

在深刻建立表面积概念的基础上,通过小组的两两合作,由已建立的知识经验通过合作交流很快得到长方体表面积不同的求法,并从中比较,选择出较简捷的方法,继而得到公式,由于正方体是特殊的长方体,在长方体研究透彻后,轻松的得出求正方体表面积的计算方法。

框架四:巩固练习

公式得出后的基本应用,通过老师手中香皂包装盒表面积的计算,及时对知识进行反馈。

框架五:解释应用

把所学的数学知识用来解决生活中的实际问题,会加深对数学知识的理解,使孩子们体会到学习数学的巨大作用,并在应用中提升对数学理解的质量,由基本练习到变式练习,再到提升练习的设计,在交流思路的过程中,还渗透了审题意识及习惯的养成,并使孩子们体悟到遇到具体情况进行具体的分析,灵活而又准确的找到解题方法。

框架六:谈本节课的收获

孩子们从知识目标上谈,同时从情感态度价值观方面谈自身的体会与收获,对数学这一许多人认为枯燥的学科中产生丰富的情感,激发起孩子们热爱数学的美好情感。

在这节课中,每一个孩子学习数学的主动性被极大的调动了起来,从问题的提出到交流,整个过程可以看到孩子们都在主动热烈的参与,特别是在探求长方体表面积不同的求法时,孩子们智慧的火花不时的在课堂上迸发,有的从长方体两个相对的面为一组去分析,得到求法;有的把长方体的上面、前面和左面分为一组去求;还有的孩子从长方体展开的平面图去求,更可贵的是有的孩子能够想到用底面周长乘以高再加上、下两面面积的方法得到长方体的.表面积。对问题的思考具有创新性与独特性,思维的深度得以发展。另外,孩子们语言的表述清晰、准确,声音洪亮,手拿学具示范时动作落落大方,谈体会与收获时精彩的发言给老师留下了深刻而美好的印象。从这节课上,可以看出孩子们对数学的情感是积极的,参与是主动的,同时,在达到完成教学目标的同时,数学思维得到了较好的发展,获得了有效学习。

这节课存在着一些遗憾的地方,例如:在探求长方体表面积方法的交流过程中,由于课堂上的生成情况较多,在处理时由于教学艺术的欠缺,耗时太长,以至于最后的几道提升练习来不及在课堂上完成,更多的精彩没有展现出来,留下了较大的遗憾。从这节课上,我收获了很多,同时,认识到自己在教学中还存在着较多的不足与问题。做为教师,课堂上当孩子们在热烈交流的过程中,要学会调控与把握,与教学目标关系不大时,要适时的把学生拉回来,一节课的时间是有限的。因此,教师要在钻研教材的基础上,要合理安排好时间,使孩子们在每一节课上的数学思维都得以发展与提升。这是一项长期而又艰巨的过程,它需要经验的积累,特别需要教师的教育智慧,教育机智,这需要历练与功夫,在今后的教学中,更要对教材深钻,准确的把握,因为这正是教学艺术的来源。

篇13:《长方体表面积》教学反思

今天教学《长方体的表面积》不大顺畅,除了课堂上魏博宇、毕峻伟同学因理解出现偏差,交流纠正浪费时间外,我认为教师的设计也存在很大问题。

一、教学设计要删繁就简。

1、复习导入内容可以再精炼一点。没必要从长方体和正方体的点、面、棱的方面挨个去比较,去订正,直接设计说出长方体和正方体的异同点,形式也没必要挨个抽学生回答,可以同桌互相交流,抽一组代表回答即可,这样既节省时间也抓住了重点。第二个练习题的设计可以直接让学生说出面积即可,其他学生判断,因为是复习内容,没必要像新课一样都是重点去分析。

2、重点的内容重点突破。长方体的表面积探索是本节课的重点,也是在之前学习了长方体的特征和展开面的基础上进行的,所以可直接让学生借助实物或者展开图去探究长方体的表面积,关键是让学生理清弄顺长方体展开面的长和宽和原长方体的长宽高的关系,将小组合作“议一议”的内容作为重点,让学生们自己去探究、去发现、去总结,占用的时间也应该是比较重要的时间。

二、牢记数学课的“三必讲、三不讲”。比如这节课上“什么是长方体的表面积?”在学生用自己的话说出来后,没必要定义读三遍,然后又抽取了10个同学依次回答问题。包括温故知新里的练习内容,只要学生回答正确,或者知错能改,没必要一道又一道的讲解。

三、数学课应该精讲多练。而本节课学生说的多,而且环节过于罗嗦,将简单问题复杂化了,导致教学任务没有完成,练习又少之又少。

以上原因都是老师个人的原因造成的,初次带五年级数学,对教材内容以及重难点内容抓不准、吃不透,设计上不敢求新颖只求能正确的教学下来就好,针对以上不足,我以后一定要勤学习,勤请教,争取快速提高自己的数学教学水平。

篇14:《长方体表面积》教学反思

本节课的教学本着让学生自主探究的要求,让学生充分自主学习、研究、讨论和操作,从而得出结论,激发学生的学习兴趣,培养学生思维能力和实践能力。并在操作的过程中,让学生理解表面积的意义,总结出求表面积的计算方法并能学会运用。

但是由于大部分学生是外来学生,缺乏一定的生活经验,导致他们缺乏解决实际问题的能力,没能真正学以致用。如在解决课本练习中的给洗衣机做一个布罩时,求至少需要多大面积的布,部分学生没有直接接触过洗衣机,对给它做布罩需要做几个面不清楚,因而影响解决该题。另外,课本练习中要为一长为10厘米,宽为8厘米,高位2厘米的长方体选择一合适尺寸的包装纸,几乎全部的学生都选择了第一种包装纸,理由是这两者的面积刚好相等。正是由于学生对如何包装物体缺乏一种生活的认识,所以他们没法做出教参所要求的答案。

因此,我们教师在教学该部分时,应尽量让学生获得更多对生活的认识,加强直观教学,让他们在生活中学习、在生活中获取知识。

篇15:《长方体表面积》教学反思

长方体的表面积属于空间与模型这个模块。在认识了长方体的基本特征,利用面与面之间的关系,探索出其表面积的计算公式。

在备课的时候,我认为这课虽然是本单元的学习重点之一,但学生在理解长方体面的特征的"基础上,进行知识的扩展,应该不是一件很困难的事。

但从学生的课后作业上看,还真是问题多多。分析了一下原因,主要有以下几点:

1、学生对总结出来的公式还不熟练。

虽然,我还教了学生记忆的技巧,但是很明显有的学生在算面积的时候还是张冠李戴,这说明学生对一个新知识的掌握还需要反复、重复加强。

2、学生对题目意思理解不透。

有的学生马虎大意,对完成作业态度不够,草草了事。以致有的题目存在“陷进”,他并没有发现出来。比如,房间贴墙纸,地面肯定是不用贴的,有的学生就没有想到。

3、计算上有问题。

长方体的表面积计算有些繁琐,这就要求学生计算细心 ,可是从作业上看,还是有些学生算式是对的,算错了。很可惜的。计算基本功以后还是要多加训练。

篇16:《长方体表面积》教学反思

教学《长方体的表面积》这一课,我主要想通过学生的操作,让学生理解表面积的概念,初步掌握长方体表面积的计算方法,会用求表面积的方法解决生活中的一些简单问题。

课堂中,在学生认识了表面积的概念后,结合例题,我引导学生求长方体的表面积时,提出问题:“你能想办法求出这个长方体六个面的总面积吗?试着做一做”。不一会儿,两种方法写在了黑板上,学生列出了这样的算式:0.7×0.5×2+0.7×0.4×2+0.5×0.4×2和(0.7×0.5+0.7×0.4+0.5×0.4)×2,我顺势引导学生得出长方体表面积的计算方法。这时,史渊博站起来说:“老师,还可以这么列算式:0.7×0.5×2+(0.7+0.5)×2×0.4”。

说实话,这种方法我们在计算圆柱体的表面积时经常用到,而对于计算长方体的表面积时,我一直认为孩子们不会想出这种方法,所以过去几次教学这一课时从未介绍过。既然今天孩子们提出来了——这种预设之外的生成性资源,那我必须顺势开发利用。我接着提出:“这种方法对吗?”孩子们面面相觑,不知如何判断。“你能给我们讲讲是怎样想的吗?”看到孩子们如此的表情,我又继续提出问题。“这个长方体包装箱,先做两个底面,需要0.7×0.5×2平方米硬纸板,而长方体前后左右四个面展开是一个大长方形,这个大长方形的长是长方体两个长加两个宽的和,宽是长方体的高,所以这四个面的面积是(0.7+0.5)×2×0.4,把两个底面加四个面就是这个长方体六个面的总面积。”史渊博一口气说出了自己的想法。“是这样子吗?那我们动手将手中的长方体剪剪看吧。”学生动手将手中的长方体上下两个底面剪去,其余四个面沿一条高剪开,发现的确是长方形,而这个长方形的长是底面周长,宽是长方体的高,这种方法自然很容易理解了。这样一个教师认为不适合对学生讲的问题方法,随着学生的提出迎刃而解了。

课后,细细琢磨,教师只不过是让学生说出了自己的想法,而实际是将学习的主动权交给了学生,结果创造了水到渠成的事。看来,学生是金子,只要我们真正把主动权还给他们,允许他们用自己的大脑思考,用自己的嘴巴表达,就能激起孩子们思维的火花,发出耀眼的光芒,我们的课堂也就更加精彩!

篇17:《长方体表面积》教学反思

《教参》中明确写到:表面积这部分内容,是在学生认识并掌握了长方体的特征的基础上教学的。教学的难点在于,学生往往因不能根据给出的长方体的长、宽、高,想像出每个面的长和宽各是多少,以致在计算中出现错误。为了使学生更好地建立表面积的概念,要让学生把展开后每个面与展开前这个面的位置联系起来,更清楚地看出长方体相对的面和面积相等,每个面的长和宽与长方体的长、宽、高之间的关系,为下面学习计算长方体的表面积作好准备。每个人都生活在多维的世界里,看到的事物都不是平面,但在今天的教学中,学生的头脑却很难与立体“接轨”。

以往,长方体展开图教学的落脚点在理解“表面积”的含义。由教师用教具演示展开过程,然后直接出示展开图。借助形象直观的展开图,学生能够较好理解概念,明确其外延。可此次展开图不仅承载着上述“使命”,还有新的“任务”:重视图与体的关系,重视面与体的转化。因此,在教学中老师必须注重引导学生经历展开的过程,感悟面与体、图与体之间的联系。而此次,教材用主题图的形式要求动手

(1)

操作,让每个学生拿一个长方体或正方体纸盒沿着棱剪开,再展开,看一看展开后的形状。在操作过程中,没有限制学生剪法,因此为展开图的多样性提供了可能。在操作完成后,由于学生有了亲身体验,对展开图与立体图形之间的关系有较深感悟。

在实际教学中,许多学生找不到窍门,将长方体剪成了若干个单独的部分。教师可以先示范教材中展示图的剪法,并说明操作要求:展开图最好是一个整体,这样便于观察与研究。然后再请学生动手尝试,并鼓励大家剪出与老师不同的展开图。

让每位学生动手操作尝试、在对比观察中思考是非常重要的。没有操作就没有经历,没有经历就没有感悟。这里的动手虽然费时,但是必不可少。在课堂中,我通过提问引导学生主动将图与体建立起联系。如请他们在展开图中,分别用“上”“下”“左”“右”“前”“后”标明6个面。观察长方体展开图,每个面的长和宽与长方体的长、宽、高有什么关系等等。虽然本节课的教学重视了体到面的转化,但对于面到体的转化则力度明显不够。因此可以在长方体、正方体展开图的教学中,增加一个练习环节,请学生先任意确定一个面做下底面,写下“下”,然后想象折叠的过程,在相应的面上标上“上”“左”“右”“前”“后”的文字。

(2)

有困难的学生可还原展开过程,标明它6个面。这样,两幅图展开后各有侧重。长方体展开图侧重于建立起图与体之间的关系,而正方体展开图则侧重于面与体的转化。虽然展开图的教学花费了大量时间,但我认为它的价值更多地体现在培养了学生的空间观念,提高了学生的空间想像能力。

篇18:《长方体表面积》教学反思

老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:

一、本节为什么要把长方体再展开?

立体图形的表面积,求的是面积。既是面积,就是平面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为平面问题,才能用面积的概念去给表面积下定义。在平面几何里,所讨论问题的前提都是“在同一平面上”,因此,要再次展开。

三维立体空间与二维平面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与平面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。

二、为什么要安排“估算”?

教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”

我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。

其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。

更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。

三、正方体图形为什么要给出三棱长?

本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0。8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。

我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长平方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0.8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长平方乘以6”。否则,在数学逻辑上就是不严密的。

篇19:《长方体表面积》教学反思

新课程倡导学生学习有用的数学,并尽可能在有趣的情境中进行学习。教学《长方体表面积》这一课时我也在努力着,力求让学生乐学、学懂、学会,并在教学中不断地调整自己的思路。先是从生活实际出发,求长方体表面积的方法。。接着解决为什么要求长方体的表面积(学有用的数学),解决生活中,如:包装盒子、粉刷墙壁等不是都求六个面的表面积的具体问题,即组织学生完成“练一练”的题。反思如下:

一、继续抓好计算。我发现有很大一部分学生方法懂了,计算却出错了,孩子们的借口是数字太大容易出错。所以计算应是常抓不懈的。

二、进一步培养学生的抽象思维能力。学生出错的原因之一是分不清底面是哪两条棱相乘的面积,之所以这样是因为对长方体革面的人是没有理解透彻。

三、进一步在学生“乐学”方面下功夫,从这一节课看数字是大点,算起来复杂些,孩子们就觉得没趣了,有部分学生对数学有了畏惧的念头,这是最不利于我们教学的因素之一。

四、通过让学生自己动手剪、看观察分析得出表面积的几种计算方法,学生能自主探索出表面积的计算方法,学习兴趣较浓,且对计算方法也掌握的较好,避免了死记公式的办法。

五、在学生掌握了表面积的计算方法后,再出示一些生活实际应用题,既练习了实际又提高了学生学习的兴趣。

篇20:《长方体表面积》教学反思

长方体表面积教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了让学生更好的掌握这部分知识我设计了这样的教学过程。首先出示一个礼品盒,如果在礼品盒的外部包上一层精美的包装纸,包装纸的面积有多大呢?你知道怎样求吗?这时,学生纷纷说出了自己的想法,也就是求长方体的六个面的表面积。这时,我让学生以小组为单位,拿出自己手中的礼品盒,测量礼品盒的长宽高,并求出上下、左右、前后的面积,然后求表面积也就是包装纸的面积。学生在动手操作完成这一系列的过程并不困难,在大家的共同讨论、归纳下,学生们很快就得出了结论,知道了什么叫长方体的表面积并且还总结出了公式:长方体的表面积=(长×宽+宽×高+长×高)×2或长×宽×2+宽×高×2+长×高×2利用公式学生能正确进行计算。通过练习,学生们对于谁乘谁能求出哪个面已经相当熟练了,可以说是脱口而出。但在解决实际问题的时候漏洞百出,例如:在长方体的灌桶盒的四周包上一层商标,商标纸的面积是多少?在长方体的水泥柱子上刷油漆,刷油漆的面积是多少?在长方体的游泳池的底部和四周抹水泥,抹水泥的面积是多少?等这方面的问题,学生不知是否有考虑,不管说什么,学生们总是求六个面的表面积,和实际相脱节。这使我陷入了深深的思索,这是为什么呢?

本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。在操作的过程中学生理解了表面积的意义,总结出了表面积的计算方法并会运用。但是在成功的背后又存在着许多不足。我们说数学来源于生活,在日常生活中,数学无处不在。那么我们学的数学知识不就是要运用于生活中吗?不正是要解决生活中的实际问题吗?而我们的学生却缺乏解决实际问题的能力,学到的知识不会灵活运用,不会举一反三,导致学生在解决实际问题的时候会出现这样或那样的问题。因此,我们在教学这部分知识时,是否有必要让学生去参观一些实物建筑,让学生们在参观中学习计算获取知识,加强直观教学,这样是否效果更好些呢?

★ 长方体的表面积

★ 长方体和正方体的表面积教案

★ 长方体正方体表面积公式

★ 长方体的表面积和体积

★ 《长方体表面积》课后教学反思

★ 六年级数学《长方体和正方体表面积》试题

★ 小学数学正方体表面积和长方体说课稿

★ 数学课《长方体和正方体的表面积》教学反思

★ 幼儿园大班教案《认识长方体、正方体》

★ 幼儿园大班教案《认识长方体、正方体》

上一篇:

百事通!小米显示手机已被锁定_小米手机已被锁定

下一篇:

最后一页

x
精彩推送